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Review

Kinetic-Effect Models and Their Applications

Joachim Grevell

This article focuses on mathematical models that analyze the time course of drug effects in humans.
Any such model, whether parametric or nonparametric, is termed a kinetic-effect model (KEM).
These models serve to describe (interpolation) and to predict (extrapolation) the effect—time profile.
KEMs are applicable to many problems in pharmaceutics, pharmacology, and clinical pharmacology.
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INTRODUCTION TO THE DIFFERENT TECHNIQUES
OF KINETIC-EFFECT MODELING

Effect—time profiles can be analyzed by both para-
metric and nonparametric models. Parametric KEMs? can
be classified as models following a pharmacologic or a
system-analysis approach.

Parametric KEMs have the general advantage that they
are capable not only of describing the data but also of
making predictions. The system-analysis approach models
effect—time data in terms of input and output. The analysis
focuses on the system (i.e., the human organism) and the
dependence of its output or response (i.e., the time course of
the effect) upon the input (i.e., drug dosage). The system is
calibrated using the simplest input (e.g., an intravenous
bolus injection or an oral solution), and a weighting function
is obtained that describes the measured output. The re-
sponse to more complicated modes of input can be predicted
by using the technique of convolution. This approach is
comprehensively summarized by Smolen (1), who devel-
oped it during the late seventies. He also proposed to use
this technique to estimate the rate of drug input from effect—
time data by using deconvolution. An earlier attempt (2) to
analyze effect—time data by the methods of system analysis
did not utilize the technique of convolution and required
sinusoidal input. This approach is impractical for the anal-
ysis of human data.

The pharmacologic approach models the kinetics of a
drug response, according to functions that stem from in vitro
receptor binding kinetics. This method requires concentra-
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tion—time data in addition to the dosing history and effect—
time data. The parameters express the pharmacologic prop-
erties of the drug substance (e.g., potency). The following
relationship illustrates how the pharmacologic approach
combines the models of pharmacokinetics (PK) and pharma-
codynamics (PD):

PK PD
D(t) —= C(r) = or # C. (1) — E(1)

A series of doses, D(¢), produces plasma concentrations
which can be measured, C(f). PK models describe this pro-
cess. Depending on the type of dosing, both clearance
models (in the case of steady-state infusions) and compart-
mental models (in the case of intravenous bolus or oral
doses) are applicable. Besides C,(f) a time series of effects,
E(r), is measured. A variety of PD models (linear, E,,,, sig-
moid E,,, etc.) (3,4) is available to describe how E(¢) is elic-
ited by a hypothetical concentration C.(f). The crucial step
of the pharmacologic approach is the link between C(f) and
C.(t). When, after a single dose, C,(f) and E(s) peak simulta-
neously, it might be assumed that C(#) and C,(t) are kineti-
cally identical and C,(f) might be used in the PD model di-
rectly. This simplification was used in KEMs of beta-adre-
noceptor blockers (5).

A delay of the maximum of E(f) compared to the max-
imum of C,(¢) indicates that C.(#) and C(r) are kinetically
different or ‘‘out of phase.”” Theoretically one might assume
that the drug molecules have to reach a deep compartment
in order to elicit the effect. In reality the situation might be
much more complex. It is likely that the measured effect is
not a direct result of the interaction of drug molecules with
the receptor (as assumed in the PD models) but an integral
result of a cascade of events triggered initially by receptor
binding and modified by physiologic feedback and by the
measurement itself. For the purpose of modeling it is, how-
ever, convenient to postulate a compartment that is kineti-
cally different from plasma. Initial attempts to model this
very common situation assumed that the drug concentration
in a peripheral compartment, which influences the kinetics
in the central compartment (plasma), elicits the effect (6,7).
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But there are other situations where either a two-compart-
ment model is not supported by the C,(¢) data or the concen-
tration in the peripheral compartment is out of phase with
E(¢). For such situations Sheiner and co-workers (8) devel-
oped the “‘effect-compartment model.”” It was assumed that
the effect compartment had a very small volume and that
only very small amounts of drug would enter this compart-
ment and would be excreted directly to the outside. There-
fore the effect compartment is essentially a mathematical
trick and does not alter the kinetics of the other compart-
ments. Under the further assumption that the drug concen-
tration in the effect compartment, C,, equals C, at steady
state, the KEM of Sheiner et al. needed only one additional
parameter, k., a first-order rate constant, which describes
the rate of equilibration of drug between the central and the
hypothetical effect compartment. Equations to calculate
C.(¢) according to this model have been published (3) for
many different PK models and drug inputs.

A technique to analyze concentration— and effect—time
data with a nonparametric model was introduced recently
(9). Nonparametric ‘‘modeling’’ of the concentration—time
data is performed by simply connecting data points. Pairs of
concentration and effect measurements are plotted in tem-
poral order to investigate whether C, and C, are identical. If
this so-called ‘‘hysteresis plot’’ shows a significant area be-
tween the ascending and the descending parts of the curve, a
parametric link model is introduced [identical to the one de-
scribed above (8)] to predict C, from C,. The optimal esti-
mate of 4., is the one that minimizes the area within the
hysteresis loop.

This type of KEM cannot predict an effect—time profile
resulting from an altered dose, but it can describe effect—
time and C.—effect relationships that do not, for one reason
or another, comply with classical PK and PD models.

APPLICATION OF THE NONPARAMETRIC KEM TO
THE TESTING OF BIOEQUIVALENCE

Bioequivalence testing of different formulations of the
same drug substance traditionally involves the comparison
of the AUCs of the C,(¢) profiles, of the rates of absorption,
and of the time points when C, reaches its maximum. The
idea behind these tests is that only formulations with iden-
tical C,(r) profiles can produce the same therapeutic profile
and are therefore ‘‘bioequivalent.”” This requirement may,
however, be too stringent. Nonlinear relationships between
concentration and effect (e.g., the E_,, model) make it pos-
sible that different C,(r) profiles give rise to identical E(r)
profiles.

Provided that the measurable effect is closely related to
the therapeutic effect, the comparison of E(f) profiles should
provide sufficient evidence of bioequivalence. Effect mea-
surements could be performed both after single doses and
within a dosing interval after steady state has been reached.
The AUC of the E(#) profile within a dosing interval or the
time period during which E(f) exceeds a certain value could
serve as measures of bioequivalence.

The interpolation between individual effect measure-
ments and the filtering of random noise could be accom-
plished by a nonparametric KEM.

Testing bioequivalence by this method could also in-
volve patients where effect measurements could be per-
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formed more frequently than concentration measurements
(e.g., in the case of hemodynamic effects). This approach
could, at least for some drugs, establish therapeutic equiva-
lence. The future will show whether regulatory authorities
accept it.

APPLICATIONS OF THE PARAMETRIC KEM
(PHARMACOLOGIC APPROACH)

Comparison of Drug Potency

The potency of a drug can be determined in humans by
a series of infusions which lead to different steady-state con-
centrations and by simultaneous effect measurements. The
relationship between concentration and effect (PD model)
can then be analyzed directly.

This approach is seldom applicable, and investigators
try to define drug potency after single bolus doses by mea-
suring the so-called ‘‘dose-effect relationship.”” But the
question arises: When, after the dose, should the effect be
measured? The potency parameter (EDsg) determined in this
manner is dependent not only upon the drug substance and
the type of effect, but also upon the time of the measure-
ment. The EDs, cannot be compared between different
drugs, because of their PK differences.

The individual PK properties of the drugs can be in-
cluded when the potency is compared by means of a para-
metric KEM. The PK model and link model, if necessary,
are optimized for an individual drug, whereas the PD model
is the same for all drugs to be compared. The sensitivity
parameter (e.g., the slope of a linear PD model) or potency
parameter (C.50 of a E,, model) can then be compared.
C,(r) and E(r) data collected after a single bolus dose are
sufficient.

A retrospective comparison of the potency of different
beta-adrenoceptor blockers has been published recently
(10). More conclusive results would, however, be obtained
from a crossover study within one group of individuals. Fur-
thermore, the rank order according to in vivo potency could
be compared with the rank order resulting from in vitro re-
ceptor binding studies. This comparison could help to iden-
tify the receptors involved (11).

Explanation of the Duration of Drug Action

An obvious application of a KEM is the prediction of
the duration of drug action. It is a quite general observation
that drug effects last longer than concentrations can be mea-
sured in plasma. This is, first, a result of the relationship
between the drug potency and the detection limit of the
assay used to determine plasma concentrations. Moreover,
plasma levels may decline faster than the effect. This indi-
cates a nonlinear relationship between C. and effect. The
flexibility offered by parametric KEMs (the combination of
different PK and PD models) makes it possible to analyze
virtually any set of C,(#) and E(f) data. Hypotheses about
irreversible receptor binding and unknown active metabo-
lites with slow elimination are generally not required.

A typical case are the beta-adrenoceptor blocking
drugs. It was discovered quite early (5) that the reduction in
exercise-induced heart rate was linearly related to the loga-
rithm of the plasma concentration. The slope of this correla-
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Fig. 1. The concentration—effect relationship of a beta-adre-
noceptor blocker (bopindolol) is shown. The effect (reduction
of exercise-induced tachycardia) on the ordinate is expressed
as a fraction of the maximal effect E,,,. The plasma concen-
tration is plotted logarithmically on the abscissa. The auxiliary
abscissa at the top illustrates the decline in concentration after
a single dose in terms of multiples of the elimination half-life
(t,). Two days after the dose (after 12 X t,,) there is still an
effect (10% of E,,,,) left [with permission (12)].

tion determines just how much slower the effect declines
compared to C,. A rather extreme case is illustrated in
Fig. 1.

Simulation of Dosing Regimens

One of the attractions of parametric KEMs is that they
can be used to make predictions beyond the limits of the
study during which the C,(¢) and E(r) data were gathered. It
is useful, as a first step, to plot the C.—effect relationship
and to realize its idiosyncrasies. Figure 2 shows an example
of a drug whose PD behavior is described by a sigmoid E,,,
model. The PD model has a sensitive part at low concentra-
tions (0 to 5 pg/ml), where a small change in C, results in a
dramatic change in effect. At higher concentrations (above
15 pg/ml) further increases leave the effect almost un-
changed.

Simulations of E(¢) after multiple doses (Fig. 3) reflect
this PD relationship. When a rather high dose (0.025 mg
daily) is selected, a very stable E(¢) profile is obtained. In-
cremental dose reduction causes little change initially, but at
a certain dose (0.010 mg daily) the effect fluctuates consider-
ably. This happens when the concentrations reach the sensi-
tive part of the PD model (Fig. 2). However, caution is ad-
visable because the parameters of the KEM may not remain
stable during the following extrapolations: single dose—mul-
tiple dose, small dose—big dose, and healthy volunteer—pa-
tient. Nevertheless, simulations can introduce an element of
rational planning which is especially useful during the clin-
ical development of new drugs.

Investigation of Kinetic and Dynamic Instabilities

Simulations of instabilities of the PK and PD character-
istics of a drug, which may occur after multiple doses, can
help to interpret variability in the results of clinical studies.
As an example Fig. 4 shows the influence of a sudden drop
in bioavailability on the E(¢) profile. The disturbance occurs
during the third dosing interval, and it is evident that the
resulting changes are minor as long as the dose is high
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Fig. 2. The in vivo concentration (C,)—effect relationship of the
dopamine agonist CQP201-403 is simulated for six healthy vol-
unteers. The KEM consists of a two-compartment PK model, an
effect compartment (8), and a sigmoid E,,, model. The effect is
the reduction (percentage) in plasma prolactin levels compared
to baseline [with permission (13)].

enough to keep concentrations in the insensitive part of the
PD model (Fig. 2). A case of PD instability is shown in Fig.
5. The E(¢) profile after a single dose (left panel) is compared
to a multiple-dose situation (right panel) where the drug has
lost potency by different degrees. A reduction in potency or
tachyphylaxis is equivalent to a shift of the sensitive part of
the PD model (Fig. 2) toward higher concentrations. The re-
sult is an E(¢) profile that fluctuates widely during the dosing
interval (Fig. 5).

The simulations in Figs. 4 and 5 also explain the advan-
tage of selecting a rather high dose for a drug under clinical
development. The higher dose tends to alleviate PD vari-
ability when the underlying PD model is nonlinear. As a re-
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Fig. 3. Simulation of different dosing regimens of the drug
CQP201-403. The KEM is taken from subject 1 in Fig. 2 [with
permission (13)].
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Fig. 4. Simulation of the influence of a sudden drop in bioavail-

ability (F) on the effect—time profile of CQP201-403. The insta-

0.25 x F; -, dose is completely missing) occurs only during the
third dosing interval and the system recovers thereafter. The
KEM is taken from subject 1 in Fig. 2. The upper and lower
panels show equivalent simulations of different dosage regimens
[with permission (13)].

sult, statistically significant results can be obtained with
fewer subjects.

The stability of PK and PD parameters after multiple
doses can be demonstrated by testing the predictive perfor-
mance (14) of a KEM which uses parameters estimated from
single-dose data. If the predictive performance is poor (pro-
ducing estimates with a significant bias), the C,(¢) and E(¢)
data obtained after multiple doses can be modeled sepa-
rately and the PK and PD parameters can be compared with
the single-dose situation.

Design of Oral Controlled-Release Formulations

Progress in pharmaceutical technology makes it pos-
sible to design an oral once-a-day formulation for virtually
any drug substance. If a drug substance has a short elimina-
tion half-life, then an oral controlled-release formulation
(OCRF) will make drug release in the intestine the time-lim-
iting step. The development of an OCRF is traditionally ori-
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Fig. 5. Simulation of a PD instability. The left panel shows the
E(r) profile after a single dose of 0.025 mg CQP201-403. The right
panel shows E(z) profiles after multiple doses when tolerance
(tachyphylaxis) has developed. Tolerance is expressed as an in-
crease in the potency parameter C.50 of the PD model: —,
C.50 unchanged, system is undisturbed; + -+, 1.25 x CS50; ---,
1.50 x C.50; -, 2.00 x C,50; —--, 4.00 x C.50. The KEM is
taken from subject 1 in Fig. 2 [with permission (13)].

entated toward an optimal C(¢) profile. It seems more log-
ical to design an OCRF directly according to a desired E(¢)
profile. This strategy was applied during the development of
an OCREF for the dopamine agonist mesulergine (15).

The following objectives were given at the beginning. (i)
Plasma concentrations of OCRFs should, for safety reasons,
not exceed the levels obtained after dosing the normal form,
which contained 0.5 mg mesulergine. (ii) The normal dosing
regimen was 0.5 mg twice a day; the OCRF should be given
once a day and should contain 1.0 mg. (iit) Ideally the E(¢)
profile should stay above 60% inhibition of the baseline
plasma prolactin during multiple dosing.

As the first step theoretical in vivo release profiles were
chosen that had the potential to render the OCRF both safe
and effective (Fig. 6). Release profiles in area II were re-

100+

- UL LL
o
~ 80|
T
g I I n
°  ®
o
0
T .
c
o
° 20
o]
]
|18
0 T T S O 1 T T T
2 4 6 8 10 2
Time (h)

Fig. 6. Release profiles for an OCRF of mesulergine. The
profiles describe a theoretical release in vivo. OCRFs with a
release according to the lower limit (LL) and upper limit
(UL) are subjected to further simulations in Figs. 7 and 8.
Areas I, IT, and III are described in the text [with permission

(15)).
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Fig. 7. C,(¢) profiles after a single oral dose are dis-
played. The two OCRF (---, UL; -, LL) containing
1.0 mg mesulergine are compared to the normal form
(——) containing 0.5 mg [with permission (15)].

garded optimal, and the upper limit (UL) and lower limit
(LL) of this area characterized two OCRFs for which further
simulations were performed (Figs. 7 and 8). Release profiles
in area I were too fast to be safe, and profiles in area III
were too slow, with the chance that the form was excreted
before all the drug content was released.

In the second step C,(#) profiles were simulated for a
single dose of OCRF(UL) and OCRF(LL) using the convo-
lution technique (Fig. 7). The release profile of OCRF(UL)
was designed to prevent plasma concentrations from ex-
ceeding those obtained after 0.5 mg in a normal form.

Finally, the convolution technique was used again to
simulate C.(z) profiles after multiple doses for both OCRFs.
The C.(t) profiles were translated into E(z) profiles (Fig. 8)
by applying the appropriate PD model (sigmoid F,,,). In
spite of marked differences in the C(¢) profiles (Fig. 7), both
OCREFs showed very similar E(¢) profiles (Fig. 8) which were
well within the desired range. The parameters of the KEM
for these simulations were obtained from a study of single
oral doses of mesulergine in healthy volunteers (15). There-
fore the same precautions as listed above apply.
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Fig. 8. E(2) profiles after multiple daily doses of OCRF
(UL, ---) and OCRF (LL, ——). The effect is the reduc-
tion (percentage) in plasma prolactin levels compared to
baseline. The shaded area indicates the therapeutically
desired effect [with permission (15)].
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The OCRFs were unfortunately never tested in humans
because the clinical development of mesulergine was
stopped for toxicological reasons. The approach was re-
peated for another dopamine agonist (bromocriptine), and
the OCRFs produced the expected effects in healthy volun-
teers (N. Mazer and J. Drewe, III World Conference CPT
1986 poster demonstration No. 219).

APPLICATION OF THE SYSTEM-ANALYSIS APPROACH
TO STOCHASTIC CONTROL

The idea to use the principles of control theory (16) for
the optimization of drug dosage in an individual patient has
evolved quite recently (17) and systems of different levels of
sophistication (18) have been developed. The basic compo-
nents of a closed-loop stochastic control system with auto-
matic feedback are displayed in Fig. 9 as a block diagram.

Stochastic control is a process that seeks an optimal
balance between adapting the parameters of the KEM and
controlling the patient’s response (output) by adjusting the
drug dosage (input). The control operates continuously be-
cause the patient is subject to unknown disturbances from
the environment and from within him- or herself. These dis-
turbances alter the way the patient responds to the drug and
also add random noise to the response. A filter identifies this
random component of the raw output and subtracts it,
leaving the measured output. In parallel the KEM simulates
the behavior of the patient by translating the drug input via
transfer functions into predicted output. The discrepancy
between the predicted and the measured output causes the
adaptor to adjust the parameters of the KEM. The degree of
this adaptation is determined by the controller, which also is
capable of altering the predicted output by changing the drug
input. Moreover, the controller compares the measured
output with the desired output. The dual task of adapting the
model and optimizing the measured output according to the
desired output is at the core of the stochastic process. The
desired output is the result of an algorithm (optimization cri-
terion) that takes into account the previous dosing history,
the likelihood of side effects, the status of the patient, and
possibly the ad hoc judgment of a physician.

Prototypes of such and similar systems are tested in
clinical situations where continuous control is required,
such as control of blood pressure in intensive care, control
of the depth of anesthesia and degree of muscle relaxation

unknown disturbances

raw output measured output
PATIENT FILTER 1

predicted output

KINETIC EFFECT MODEL

ADAPTOR

controlled input

CONTROLLER

desired output

OPTIMISATION CRITERION

Fig. 9. Block diagram for a stochastic control system to opti-
mize drug therapy for an individual patient.
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Table I. Comparison of Methods Related to Clinical Pharmacokinetics and to KEM

Methods and criteria

Problem

Clinical pharmacokinetics

KEM

Design of a dosing regimen

Proof of linear PK
Clearance, C, at

steady state

Elimination half-life
Optimal range of C,,
Optimal C,() profile

Design of controlled-release
formulations

Test of bioequivalence between
different formulations

Individualization of drug

therapy monitoring

Comparison of AUCs and
absorption kinetics
Therapeutic drug

Proof of stability of PD
E(1) at steady state

Duration of effect
Therapeutically desired effect
Optimal E(r) profile

Comparison of E(#) profiles

Control system with effect
as feedback

during surgery, control of postoperative pain relief, and con-
trol of blood glucose in diabetes (for a review see Ref. 17).
The applications are limited, at present, to disease states
where output can be frequently sampled and to intrave-
nously administered drugs with a short duration of action
and a rapid elimination.

CONCLUSION

The problems that might be solved by applying tech-
niques related to KEM are presently tackled by methods of
clinical pharmacokinetics. Table I shows a comparison of
the two methods with respect to topics addressed in this ar-
ticle. In most cases pharmacokinetics and KEM will com-
plement each other. But for some problems, such as the test
of bioequivalence and the individualization of therapy, the
KEM will provide unique solutions.
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